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Abstract. Given a collection of images of a static scene taken by many
different people, we identify and segment interesting objects. To solve
this problem, we use the distribution of images in the collection along
with a new field-of-view cue, which leverages the observation that people
tend to take photos that frame an object of interest within the field of
view. Hence, image features that appear together in many images are
likely to be part of the same object. We evaluate the effectiveness of this
cue by comparing the segmentations computed by our method against
hand-labeled ones for several different models. We also show how the
results of our segmentations can be used to highlight important objects
in the scene and label them using noisy user-specified textual tag data.
These methods are demonstrated on photos of several popular tourist
sites downloaded from the Internet.

1 Introduction

With billions of photos now online, community photo collections found on Flickr
[1] and other photo sharing sites offer tremendous opportunities for computer
vision research. Recently, much work in the field has been devoted to making
use of such photo collections for visualization [2], hole filling [3], learning object
category models [4], dense 3D scene reconstruction [5], and geolocation [6]. While
these recent efforts have capitalized on the quantity and variety of online images
to enable various applications, a second important source of information is the
distribution of photos — i.e., which photos do people choose to take?

The distribution of photos in a large collection holds valuable semantic in-
formation about the content of the scene. In this paper, we seek to leverage
this information to automatically identify and segment interesting objects in a
scene. While extremely challenging to solve purely by analyzing pixels in a sin-
gle image, this problem is much more tractable with a large image collection.
For example, a robust interest operator is obtained by simply finding features
(e.g. SIFT [7]) that appear in numerous photos. By identifying oft-photographed
features, this operator tends to highlight the parts of the scene that people find
most interesting. The fact that this works robustly is a powerful demonstration
of the wisdom of crowds [8], where a community of people combine to provide
information that is otherwise difficult to obtain.
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(a) (b) (c) (d)

Fig. 1. (a) A “bad” image of the Hagia Sophia. (b,c) Two “good” images of objects in
the Hagia Sophia. Good images provide useful segmentation cues. (d) An image of the
Trevi Fountain showing why photo collections of some scenes may not contain many
good images. In this case, there are interesting statues in the façade, but it is difficult
for photographers to get close enough to photograph them individually.

While detecting interesting features is straightforward via simple counting
methods, identifying interesting objects is more challenging, as it necessitates
segmentation — another difficult, ill-posed computer vision problem. To address
this segmentation problem, we propose a new field-of-view cue for inferring per-
ceptual grouping information from large photo collections. The key idea is very
simple—it’s based on the observation that people tend to take photos of “ob-
jects” as opposed to arbitrary regions of the scene, and these objects are usually
framed within the field of view of the photo. Consequently, if two points are on
the same object, those two points will likely appear together in many photos.
We may therefore use the co-occurence of features in many images as a cue for
grouping them together.

The main contribution of this paper is the introduction of this field-of-view cue
and techniques for leveraging it for identifying and segmenting objects in images
and point clouds. We also demonstrate the use of this analysis to display the
relative importances of objects, automatically compute textual labels for these
objects from noisy user-contributed Flickr tags (which are attached to images,
not image regions), and browse a scene using an interactive map.

1.1 Related Work

The problem of decomposing a set of images into recurring objects in an unsu-
pervised manner has been the subject of much recent work in computer vision,
such as Fergus et al. [9], Sivic et al. [10] and Sudderth et al. [11]. However, to
our knowledge, ours is the first paper to address this problem for static scenes,
where objects always have the same 3D context and variation among images
arises from differing camera positions and viewing directions. A closely related
problem is addressed by Campbell et al. [12], who use a camera fixation cue that
is similar to our field-of-view cue to segment a single 3D object from a set of
images.

In a similar vein to our paper, Russell et al. [13] use grouping cues in an
unsupervised approach to object category segmentation. They compute multiple
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segmentations for each image and then apply a latent topic model where the
segments serve as documents, relying on the fact that each object will appear
against several different backgrounds, so “bad” segments will contain multiple
latent topics. In our case, however, as the scene is static, any image region will
almost always appear in the same context. We instead rely on the field-of-view
of the photographs to provide our grouping cues.

Some of our applications draw on other work in related areas. Simon et al. [14]
use the distribution of photos in an online collection to find canonical images
of a scene. In their work, these images are intended to serve as a summary
of the scene, and they do not attempt to extract individual objects, nor do
they segment the scene or any of the images. A similar problem is addressed
by Epshtein et al. [15], who use the distribution of viewing frusta in a photo
collection to organize the photos into a hierarchy. Barnard et al. [16] learn the
joint distribution of image regions and text labels and use this distribution to
predict labels for regions in new images. Instead of attempting to predict noisy
tags, we find strong associations between clusters and tags and use them to select
good labels from the set of tags submitted by Flickr users in Section 4.2.

1.2 Our Approach

As discussed in the previous section, much existing work deals with identifying
and segmenting object categories from visual scenes, where each object may
appear against different backgrounds in different images. We address a different
question: how can one identify and segment interesting objects from a static
scene? The fact that the background changes was important for previous work,
and enabled a solution using latent topic models. While handling static scenes
may seem like a simpler problem, the fact that the background is not changing
is a challenge — different cues are needed.

We instead use information provided by the distribution of photos taken of
the scenes. To segment the scenes, we use what could be called a field-of-view
or incidence constraint. For scenes that contain individual objects of interest,
we hypothesize that multiple photographers are going to take pictures “of” each

(a) (b) (c)

Fig. 2. (a) A case in which field-of-view cues and spatial cues agree, indicating a pair
of objects. (b) A case in which field-of-view cues indicate a single object but spatial
cues indicate a pair of objects. (c) A case in which field-of-view cues indicate a pair of
objects but spatial cues indicate a single object.
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object: pictures in which the object is prominent and takes up most of the frame.
We call such images “good”, and other images “bad”. Good images, for our
purposes, are ones which provide useful segmentation cues. Figure 1 shows a few
example images of both types. When enough images are good, we find that field-
of-view constraints can be used to accurately segment the scene into interesting
objects. In the remainder of the paper, we give a simple scene model which takes
advantage of field-of-view constraints and evaluate the effectiveness of this model
on several different scenes. We also demonstrate the three applications of scene
segmentation mentioned above: an “interestingness” viewer, an automatic object
labeler that uses user-submitted Flickr tags, and an overhead map browser.

2 Algorithm

Given a set of images of a scene, we first follow the strategy of Snavely et al. [2]:

1. Use the SIFT keypoint detector [7] to extract feature regions from all images.
These regions are represented using the SIFT descriptor.

2. For each pair of images, perform feature matching on the descriptors. Prune
this set of matches by using RANSAC [17] to estimate a fundamental matrix,
removing all inconsistent matches.

3. Organize the matches into tracks, or connected components of features, re-
moving tracks that contain multiple features in the same image.

4. Perform structure from motion on the set of feature tracks, which returns a
set of 3D point locations for all valid tracks, as well as camera parameters
for each image.

We now operate on two structures, the (sparse) point-image incidence matrix,
indicating which points appear in which images, and the set of 3D point locations.
Let V be the set of images and X be the set of points, with M = |V | and N = |X |.
We use xj ∈ Vi if point j is visible in image i. Our goal is to compute a clustering
C over the points X , where two points belong to the same cluster if they are
part of the same object.

Our approach is to use both field-of-view cues and spatial cues to segment
the scene. Figure 2 illustrates how these cues work at a basic level. Field-of-view
cues encourage points seen in the same view to be part of the same object, while
spatial cues encourage objects to be spatially localizable. We use image incidence
to enforce field-of-view cues and a single 3D Gaussian distribution per object to
enforce spatial cues. To construct a probabilistic model that takes advantage of
both types of cues, we combine a mixture of 3D Gaussians (Figure 3a), which
uses spatial cues only, and pLSA [18] (Figure 3b), which uses incidence cues only.
Our combined model (Figure 3c) uses both types of cues.

We briefly review the probability distributions specified by a mixture of Gaus-
sians and pLSA, and combine them into a single model. A mixture of Gaussians
corresponds to the following distribution:

P (C, X |π, μ, Σ) =
∏

j

P (cj |π)P (xj |cj , μ, Σ) (1)
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P (cj |π) ∼ Mult(π)
P (xj |cj , μ, Σ) ∼ N (μcj , Σcj)

In this model, there is a class variable cj associated with each point xj . The
class variable is drawn from a multinomial distribution with parameter π, and the
point locations are drawn from 3D Gaussians with parameters μcj and Σcj , where
the point class cj specifies which Gaussian to use. The pLSA model corresponds
to the following distribution:

P (C, X |θ, Φ) =
∏

i

∏

j|xj∈Vi

P (cij |θi)P (xij |cij , Φ) (2)

P (cij |θi) ∼ Mult(θi)
P (xij |cij , Φ) ∼ Mult(Φcij )

In ordinary pLSA, xij would be a tally of the number of times word j appears
in document i. However, in our case the words are 3D points, none of which can
appear more than once in a single image. In the pLSA model, there is a class
variable cij for each point-image incidence. In other words, a point can belong
to different objects in different images. This is not really desirable in our case,
so we restrict our model to use a single class variable per point. In addition,
we introduce a spatial term. Our combined model corresponds to the following
distribution:

P (C, X |θ, π, μ, Σ) =

⎛

⎝
∏

i

∏

j|xj∈Vi

P (cij |θi)

⎞

⎠ × (3)

⎛

⎝
∏

j

P (cj |π)P (xj |cj , μ, Σ)

⎞

⎠

P (cij |θi) ∼ Mult(θi)
P (cj |π) ∼ Mult(π)

P (xj |cj , μ, Σ) ∼ N (μcj , Σcj )
cij = cj

Instead of directly replacing the multinomial topic distributions from pLSA with
3D Gaussian distributions, we add a single class variable cj for each 3D point
xj and tie the values of the incidence class variables cij with cj. The resulting
model is not strictly a valid Bayesian network, but could easily be converted to
one in which the cij variables are eliminated and cj is directly conditioned on all
of the images in which the point appears. We find it is easier to think about tied
variables, and the above joint density can easily be maximized (locally) using
the EM algorithm [19].
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Fig. 3. Graphical models for (a) a mixture of Gaussians on 3D point locations, (b)
the pLSA model, and (c) the combined model that uses both point location and image
incidence information

3 Evaluation

We tested our model on six scenes, each of which contains between 300 and 3000
images downloaded from Flickr: Trafalgar Square, the Pantheon in Rome, Hagia
Sophia, Trevi Fountain, Old Town Square in Prague, and Piazza Navona. These
scenes all contain component objects which have names and can be identified
visually. In order to test our segmentations, we created ground-truth clusterings
for each scene manually, as follows. For each scene, we reconstructed a set of
3D points using the system of Snavely et al. [2]. We then assigned 3D points
to clusters by manually selecting regions in images and grouping all points in
the selected region with a particular cluster. Though any hand-labeling of this
nature is somewhat arbitrary, we attempted to label objects as uncontroversially
as possible. We also used Wikipedia [20] text and images to decide which ob-
jects should be included when there was some uncertainty. In other cases, there
is a natural segmentation implied by the scene. For example, in the Trafalgar
Square scene we labeled each building and statue as a separate object. Since
the reconstructed scenes contain hundreds of thousands of 3D points, many of
which don’t belong to an easily nameable object, we only hand-label a small
fraction of the points, and evaluate our algorithm on these points only. Note
that the aforementioned manual steps were used only to create the ground truth
used for evaluation purposes. The segmentation algorithms themselves are fully
automatic.

For all scenes, we tested three different models: a mixture of 3D Gaussians,
the pLSA model, and our combined model that uses both spatial and incidence
cues. Each model was tested using multiple different values of k, the number
of clusters. For each value of k, we used 5 different random initializations and
ran 100 iterations of the EM algorithm for each, then kept the single result with
highest joint probability for each value of k. We created hard cluster assignments
by assigning each point to its most likely cluster (or, for pLSA, the cluster
under which the point has highest probability). We evaluate clusterings using
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Table 1. Median values of the VI clustering metric V I(C,C∗) for each algorithm and
scene, over multiple runs of EM. Lower values indicate the computed clustering is closer
to the hand-labeled clustering.

Trafalgar Pantheon Hagia Sophia Trevi Prague Navona
mixture of Gaussians 1.15 1.36 0.63 0.81 0.35 0.68

pLSA 2.07 1.70 0.64 3.12 1.13 1.46
combined model 0.69 0.38 0.53 2.07 0.20 0.45
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Fig. 4. Evaluation of clustering C against ground truth clustering C∗ for the (1a)
Trafalgar Square, (1b) Pantheon, (2a) Old Town Square, and (2b) Trevi Fountain
datasets. The horizontal axis H(C|C∗) is a measure of over-segmentation, and the
vertical axis H(C∗|C) is a measure of under-segmentation. Note that for the Trevi
Fountain, both pLSA and the combined model are prone to undersegmentation, as
most images of the Trevi Fountain are of the entire façade. This causes field-of-view
cues to prefer larger objects, even when there are interesting details within the façade.

Meila’s Variation of Information metric [21]. Given a ground truth clustering C∗

and computed clustering C, the VI metric V I(C, C∗) = H(C|C∗) + H(C∗|C)
measures the amount of information lost and gained between the two clusterings.
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(a) (b) (c)

Fig. 5. Satellite view of ground truth (top row) and computed segmentations (bottom
row) for (a) Trafalgar Square, (b) Old Town Square, and (c) Piazza Navona. Each color
corresponds to a different cluster. For the Trafalgar Square scene, not all reconstructed
points are shown in the computed segmentation to avoid clutter. In all figures in this
paper, we use the same color for each cluster in each scene. As there is no explicit
correspondence between ground-truth clusters and computed clusters, the ground-truth
clusterings do not use the same color scheme.

For two identical clusterings, this value is zero. Also, by looking at the two
conditional entropy terms separately, we can get a sense of how over- and under-
segmented C is.

Table 1 contains median VI distances for each of the three algorithms and
six scenes. The combined model performs best on all scenes except the Trevi
Fountain, which suffers from undersegmentation as photographers cannot get
close enough to the façade to take closeup images of the interesting objects. Fig-
ure 4 shows our over- and under-segmentation results on four of the scenes. In
general, when the collection of photographs contains many images of interesting
objects, our combined model does well. Since what we are testing is whether or
not field-of-view cues provide additional information that is useful for segmen-
tation, our results demonstrate that this is true for many scenes. Visualizations
of the clusterings themselves are shown in Figures 5 and 6.
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(a) (b) (c) (d)

Fig. 6. Image views of computed segmentations for (a,b) Trafalgar Square, (c) Old
Town Square, and (d) Piazza Navona

4 Applications

4.1 Importance Viewer

Once we have computed a 3D point segmentation for a scene, we can use this
segmentation to compute and display additional information about the scene. In
this section, we describe two such applications: highlighting interesting objects
in images and labeling image regions using noisy user-submitted Flickr tags.

Given an image in the collection, we want to identify regions which belong to
objects that are important or interesting. We define an object as interesting if
there are many photos of it in the collection. As this tends to overly reward large
background objects, we also penalize objects for size. Our importance score is:

imp(c) = α
1

|Σc|
∑

i

θi(c) (4)

Here, α is a scene normalization coefficient that enforces a fixed total impor-
tance, 1

|Σc| penalizes clusters proportional to the determinant of their covariance
matrices, and

∑
i θi(c) rewards clusters for appearing in many images. To visu-

alize importance in an image, we assign each pixel to its nearest feature point in
the image and highlight the pixel with intensity proportional to the importance
of the cluster to which this point is assigned, falling off as distance to this point
increases. Some resulting importance images can be seen in Figure 7.
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(a) (b) (c)

Fig. 7. Importance images computed for (a) Piazza Navona, (b) Prague, and (c) the
Pantheon (top) and Trafalgar Square (bottom). Importance is indicated by color sat-
uration, with different hues for different clusters.

4.2 Region Labeling

Flickr and most other photo sharing sites give users the ability to attach textual
tags to entire images. (Flickr also provides functionality for leaving rectangular
notes on image regions, but this feature is much less utilized.) In general, these
tags are noisy and the majority of them do not correspond to actual objects in
the scene. For many objects, however, we are able to compute accurate tags by
examining tag-cluster co-occurrence statistics. To find good object tags, we first
apply pLSA to the tags with fixed image-topic distributions θ computed from
the point clustering. This gives us a distribution over tags for each cluster P (t|c),
which also gives us the joint distribution P (c, t). For a particular cluster c and
tag t, we compute the following score:

score(c, t) = P (c, t) (log P (c, t) − log P (c)P (t)) (5)

This gives high scores to cluster-tag pairs that appear much more frequently than
would be expected given just the marginals, which indicates that the cluster and
tag are probably related. We then assign the tag with highest score to each
cluster if the score exceeds a specified threshold, otherwise we assign no tag to
the cluster. Region tagging results can be seen in Figure 8.

4.3 Interactive Map Viewer

Many systems have been created to support interactive browsing of the visual
content of a scene [2,14,15,22]. Our segmentations allow for the possibility of
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Fig. 8. Region tags automatically computed from our segmentation, and used to label
two images of (a) Trafalgar Square, (b) Old Town Square, and (c) Piazza Navona.
We compute these labels using noisy user-submitted tags downloaded from Flickr,
automatically associating a single tag (or no tags) with each cluster. In these images,
we manually moved the labels to make them more readable.

Fig. 9. An interactive floor plan viewer showing the Pantheon (center). By moving the
mouse over one of the highlighted circles, the user can see an image of the object at
that location (sample images shown on left and right).

object-centric interactive scene viewers. We have created a simple interactive
viewer based on an overhead map or floor plan, shown in Figure 9.

To create the interactive floor plan, we first segment the scene using the
algorithm from Section 2. We then manually align the scene points with an
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overhead view. Since we only want to include segments which can be localized
at a reasonably-sized spot on the map, we remove all segments larger than a size
threshold. To choose the representative image for each segment, we compute
the Kullback-Leibler divergence between the distribution of scene points in each
image and each cluster.

5 Conclusion

In this paper we have proposed a new field-of-view cue that can be used to ex-
tract objects from static 3D scenes, along with a probabilistic model that takes
advantage of this cue and several applications of our method. We stress that the
probabilistic model is intended to evaluate the usefulness of field-of-view cues,
and not to provide a complete solution to the scene segmentation problem. Note
in particular that we are not incorporating any of the more standard image seg-
mentation cues such as intensity, color, contour, or region information, except
through feature matching for estimating point correspondences. Including such
additional terms and using more sophisticated models, like Latent Dirichlet Al-
location [23] or Dirichlet process mixtures would likely further improve upon
our results. Still, our model that takes into account only field-of-view and spa-
tial proximity is able to achieve segmentations that are good enough to enable
a variety of applications.
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